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ABSTRACT1

The effectiveness of a probabilistic risk assessment (PRA) depends critically on the quality of2

input information that is available to the risk assessor and specifically on the probabilistic3

exposure factor distributions that are developed and used in the exposure and risk models.4

Deriving probabilistic distributions for model inputs can be time consuming and subjective. The5

absence of a standard approach for developing these distributions can result in PRAs that are6

inconsistent and difficult to review by regulatory agencies.  We present an approach that reduces7

subjectivity in the distribution development process without limiting the flexibility needed to8

prepare relevant PRAs.  The approach requires two steps.  First, we analyze data pooled at a9

population scale to (i) identify the most robust demographic variables within the population for a10

given exposure factor, (ii) partition the population data into subsets based on these variables, and11

(iii) construct archetypal distributions for each subpopulation.  Second, we sample from these12

archetypal distributions according to site- or scenario-specific conditions to simulate exposure13

factor values and use these values to construct the scenario-specific input distribution.  It is14

envisaged that the archetypal distributions from step 1 will be generally applicable so risk15

assessors will not have to repeatedly collect and analyze raw data for each new assessment. We16

demonstrate the approach for two commonly used exposure factors – body weight (BW) and17

exposure duration (ED) – using data for the U.S. population. For these factors we provide a first18

set of subpopulation based archetypal distributions along with methodology for using these19

distributions to construct relevant scenario-specific probabilistic exposure factor distributions.20

Keywords: Probabilistic Risk Assessment, Probability density function (PDF), Exposure21

duration, Body weight, Classification and Regression Tree (CART)22
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INTRODUCTION1

Among the current needs of the exposure-assessment community is the need for models and2

data linking exposure, dose, and health information.  Quantifying such links supports3

environmental surveillance, improves predictive models, and enhances the usefulness of risk4

assessment and risk management (1).  However, high variability and uncertainty in human5

behaviors, exposure routes, contaminant transport, and human pharmacokinetics requires the risk6

assessor to collect and analyze large amounts of data and apply sophisticated statistical and7

mechanistic models to the interpretation of these linkages. This process can be exceedingly8

difficult and costly to execute.  It is also difficult for stakeholders, and governing agency to9

review.10

Practitioners often try to simplify the process by selecting upper bound estimates of11

uncertain parameters in risk models so that their calculations are accepted as conservative.12

These upper bound estimates are also transparent for the reviewers. However, compounding13

upper bound estimates in risk calculations limits opportunities to explore the implications of the14

risk estimates by identifying margins of error; comparing reducible versus irreducible15

uncertainties; separating individual variability from true scientific uncertainty, and quantifying16

benefits, costs, and comparable risks for decision-making. More realistic and sophisticated17

variance propagation and uncertainty analyses methods are needed to fully explore these source18

to risk relationships.19

The U.S. Environmental Protection Agency (EPA) Office of Emergency and Remedial20

Response is updating its 1989 Risk Assessment Guidance for Superfund (RAGS) as part of its21

EPA Superfund reform activities. Volume 3 Part A of RAGS was recently released in draft form22



4

as an update to the existing two-volume set of RAGS (2). The update provides policy and1

technical guidance on conducting probabilistic risk assessment for both human and ecological2

receptors. However, the effectiveness of these probabilistic methods for characterizing and3

communicating risk is largely dependent on the risk assessor’s ability to characterize the type4

and degree of uncertainty and variability associated with inputs to their risk models, particularly5

those inputs that have a strong influence on the modeling outcome.6

We believe that the probabilistic risk assessment process would benefit from a systematic7

approach for developing probabilistic value ranges for model inputs.  We envisage an approach8

that parallels the one adopted by EPA for deterministic risk assessments where the availability of9

default exposure factor values has improved the ease and consistency of both performing and10

reviewing deterministic risk assessments. PRAs cannot have an equivalent list of default value11

ranges for uncertain model inputs.  This is primarily because PRAs are applied to confront12

uncertainty and variability such that assessors can quantify risks at specific percentiles in a13

cohort or population and set confidence intervals around their predictions. Default input14

distributions would almost certainly lack the flexibility and necessary relevance for application15

to specific target populations and exposure scenarios.16

We offer instead a standard approach for developing scenario-specific probabilistic inputs.17

The premise is that homogeneous subsets of the population can be identified for a given18

exposure factor and archetypal distributions can be developed for these sub-populations. Once19

the archetypal distributions are developed, one can construct scenario-specific exposure factor20

distributions without re-collecting or evaluating raw data for each new site-specific risk21

assessment thereby gaining the benefits of default inputs without loosing the flexibility needed22
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for scenario specific relevance. We present the approach below and demonstrate it’s use with1

two commonly needed exposure factors: body weight and exposure duration.2

DESCRIPTION OF THE APPROACH3

The approach includes two major steps and each step includes several tasks as summarized4

in Fig. 1. Step one of the approach is the process of constructing archetypal distributions for5

relevant demographic subsets of the population. Step two relates these archetypal distributions to6

site specific characteristics of the population or cohort of interest in a given PRA. Details of each7

step are provided below.8

Step One: Development of Archetypal Distributions for Demographic Subsets9

Step one of the approach includes three tasks. First, it is necessary to identify and acquire10

raw data for the exposure factor of interest along with information about the relevant11

demographic variables. Second, standard data analysis methods, data mining and graphical12

techniques are applied to identify the robust demographic variables in the population so the raw13

data can be partitioned into subsets that are relatively homogeneous with respect to the selected14

exposure factor. In the final task, archetypal probabilistic distributions are constructed for each15

subset.16

Task 1: Acquiring raw data – Developing archetypal distributions requires population-based17

data for the exposure factor of interest along with information about the associated demographic18

variables. When identifying data we consider three key attributes – quantity, quality and19

relevance. The quantity of raw data is important because a distribution that is based on that data20

has characteristics (mean, standard deviation, etc) whose uncertainties are inversely related to the21

sample size. The actual sample size needed to construct a reliable distribution depends on the22
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range of data and the precision in the measurement of each sample value. The quality of data also1

contributes to uncertainty in the form of experimental error due to flaws in sampling design or2

imprecision in measurements and/or self-reported information. These errors propagate through to3

the distribution development process. When evaluating data quality, we generally consider direct4

measurements of the exposure factor of interest to be best; followed by self-reported values for5

the exposure factor of interest; direct measures of surrogate data; and finally, self-reported6

surrogate data. Unfortunately, surrogate information (e.g., estimated breathing rate from caloric7

intake or exposure duration based on population mobility) is often the only information8

available. The relevance of data must also be considered because even large amounts of high9

quality data may not adequately capture temporal and spatial variability or the demographic10

characteristics of the population of interest. Judging the relevance of data requires a clearly11

defined exposure scenario, population and/or cohort, well-documented data and a clear12

description of the steps, if any, taken to adjust or transform the data prior to use (3).13

Task 2: Identifying homogeneous subpopulation – A number of exposure factors have been14

related to demographics such as age and gender (4-8). However, there are few reported tests of15

whether these demographic categories are indeed statistically different from one another given16

the inherent variability in the population and uncertainty in the data.  There are a number of17

approaches that can be used for data analysis when the goal is to partition the data in a way that18

reduces variance within, and increases the difference between resulting subsets. We apply19

Classification and Regression Tree (CART) data mining software (9) to systematically identify20

the most robust demographic variables for a given exposure factor.21

CART uses binary recursive partitioning to develop classification or regression trees using a22

non-analytic, computationally intensive procedure for determining what factor, and value, should23
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be used to split a data set into subsets (9).  Each new subset of the data is then analyzed and split1

again until either the sample size reaches a lower limit or the cost (added complexity) of an2

additional split exceeds what would be gained in the form of reduced variance within – and3

increased distance between – resulting subsets. The technique has been applied in many fields,4

including engineering, medicine, public health and economics (10-15). We also use graphical5

analysis to verify and interpret results from the CART analysis.6

Task 3: Constructing archetypal distributions – Once the raw data is acquired and7

partitioned into relatively homogeneous subsets, the next task is to identify an appropriate8

statistical model and to parameterize that model to fit the data within each subset. A number of9

papers, reports and books are available that describe methods for selecting and/or constructing10

probabilistic input distributions (3,16-21). In addition, computer software is readily available for11

automating much of the process. When these methods are applied, one obtains a distribution that12

provides an optimum fit to the available data.13

The approach that we use is to construct an empirical cumulative distribution from the raw14

data then use exploratory data analysis to identify the simplest (i.e. fewest parameters) statistical15

model that best captures the range and shape of the empirical distribution. The selected model is16

then parameterized to fit the data by minimizing the sum of the square difference between the17

statistical model and the empirical distribution.18

Step Two: Developing Scenario-Specific Distributions19

At this point we use site-specific information about the size, composition and demographics20

of the target population to determine how best to sample from the archetypal distributions to21

construct the most relevant probabilistic input distribution for the exposure factor and population22
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of interest.  Population counts are provided in the U.S. Census at scales that include state,1

county, census tract, block group, block, place, zip code, urbanized area and metropolitan area2

levels. This information is easily accessed from the Census Bureau’s American Fact Finder page3

(22). The census tables provide enough flexibility to acquire information about a range of4

demographic variables in the population on a scale that is relevant for most assessments.5

After sampling values from the appropriate archetypal distributions in a way that represents6

the size and demographic composition of the target population, a statistical model is selected and7

fit to the scenario specific values. When the target population is small, the sampling and8

distribution fitting process should be repeated several times to get a robust estimate of9

uncertainty in the statistical parameters of the distribution. This additional information about10

uncertainty in the statistical parameters can be useful for PRAs that incorporate both variability11

and uncertainty as discussed by Cullen and Frey (20).12

ILLUSTRATIVE APPLICATIONS13

The following applications illustrate the mechanics and capabilities of the proposed14

approach with two exposure factors; body weight (BW) and exposure duration (ED). For these15

factors we provide preliminary archetypal distributions along with methodology for adapting16

these distributions to construct a relevant scenario-specific probabilistic exposure factor17

distribution. Although the following illustrative application used data for the United States, the18

approach should be applicable to any population given adequate data.19

ILLUSTRATIVE APPLICATION 1: BODY WEIGHT20

Task 1: Acquisition of Data21
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Our primary source of data describing body weight (BW) for the U.S. population were1

gathered from the Center for Disease Control revised growth charts for children (23), the2

Continuing Survey of Food Intakes by Individuals (CSFII) (24) and the most recent National3

Health and Nutrition Examination Survey (NHANES III) (25).4

The revised growth charts are based on a number of national surveys but exclude data from5

the most recent national health and nutrition survey for children ≥ 6 years to avoid the upward6

shift in body weights in the U.S. population (23). Exclusion of this data may reduce the relevance7

of the BW information for the current population particularly if the trend towards increased BW8

continues. We consider the revised growth charts from the CDC to be appropriate for9

constructing archetypal BW distributions for children and adolescents but these distributions will10

have to be revisited periodically and adjusted to represent changes in the population.11

We use information from the 1994 through 1996 CSFII (24) to evaluate and identify the most12

important demographic variables related to BW. After identifying these demographics, the CSFII13

data for adults (age > 19 years) were combined with NHANES III data to increase the sample14

size for constructing demographically based BW distributions for adults.15

Prior to combining the CSFII and NHANES III data, the degree of bias in self-reported BW16

was evaluated by comparing the empirical cumulative distributions for adult males and females17

from each survey (Fig. 2). The actual measured BWs from the NHANES III were assumed to be18

accurate. We believe that the difference between NHANES III and the CSFII distributions in Fig.19

2 is from bias in the self-reported data from CSFII. The jagged nature of the CSFII curves20

appears to be due to the tendency for self-reported BWs to be rounded to the nearest 5 pounds.21

The overall effect of this bias in the self-reported values was expected to be negligible in the22

combined data set.23
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Task 2: Identifying Homogeneous Subsets of the Population1

Our analysis of demographic factors for BW considered age, gender, race, ethnicity, region,2

urban (whether individual lived in rural, urban or metropolitan area) and income as reported in3

Record Type 25 of the CSFII. We excluded respondents that reported being pregnant and/or4

lactating, resulting in a final sample size of 15,502 persons.  The income reported as percent of5

poverty was converted to categorical values such that “under poverty line”=1, “100-200%of6

poverty” = 2 and “greater than 200 % of poverty” = 3 (resulting frequency: 1=2673, 2=3667 and7

3=9159). We performed the CART analysis set up for a regression tree with v-fold cross8

validation (n=10) and the minimum cost tree was generated using the least squares method.9

The tree diagram in Fig. 3 presents the results for ages 12 years and above. The reported BW10

for children under 12 was primarily dependent on age. For adolescents and adults (age 12 and11

up) gender became an important variable. Females were separated by age from 12 to 24 years12

and by race for women 24 years and older. Men were subdivided by age from 12 to 19 years and13

above 72 and by race for men older than 15 years. The influence of race is further evaluated in14

Fig. 4 for women showing that the median BW reported by “Asian, Pacific Islander” women was15

approximately 12% lower than the general adult female population. The results for men (not16

shown) were similar with the average reported BW by “Asian, Pacific Islander” being17

approximately 20% less than the overall adult male population.18

Although race was clearly an important demographic for BW, only the CSFII identified19

respondents as “Asian, Pacific Islander” and that data set was not large enough to allow20

development of separate distributions for each age/gender/race category. Therefore, we21

constrained this analysis to age and gender categories. If the target population in a PRA is22

composed predominantly of adults of Asian and/or Pacific Islander decent, then we recommend23
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that the risk assessor re-evaluate the raw data or collect new data to develop relevant1

distributions for the specific cohort.2

Task 3: Constructing Archetypal Distributions for BW based on Age and Gender3

We used the information described above to develop BW distributions for each age/gender4

category. The categories were selected to coincide with the available information from the U.S.5

Census summary tables. These tables include yearly values by gender from birth through 196

years (Census Table P14) and 18 additional age categories for adults (Census Table P12).7

Children (birth through 19 years) – For children from birth through 19 years, we begin with the8

statistically smoothed growth curves from the CDC (23) and transform them into probability9

distributions that match the age/gender categories reported in the census summary tables. To do10

this, we used the growth curves from the original CDC report and simulated 2500 BW values for11

each 1-month age interval. We then grouped the data to match the age/gender categories reported12

in Census Table P14. For example, we used the 2500 body weight values for each 1-month13

interval from 24 to 36 months (n=30,000) to construct the archetypal distribution of BW for 214

year olds. We use exploratory data analysis to determine that the 3-parameter lognormal model15

(26) works well for all age categories. We fit the 3-parameter lognormal to the data from the16

growth charts by minimizing the sum of the square differences (SSxy) between the empirical and17

estimated percentiles. This “fit” was performed on the 1st, 5th, 10th, 15th, …, 85th, 90th, 95th and18

99th percentiles of the data. The resulting parameters for the archetypal BW distributions for19

children from birth through 19 are reported in Table 1.20

Adults (≥ 20 years) – For adults, we started with raw BW data from the combined CSFII and21

NHANES III. We grouped the data for adults by gender and the following ages (years) – 20, 21,22
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22 through 24, 5 year intervals from 25 through 59, 60 and 61, 62 through 64, 65 and 66, 671

through 69, 5 year intervals from 70 through 84 and 85 and above. This gave a total of 18 age2

categories for each gender that corresponded to data reported in Census Table P12. Once the data3

were grouped, we estimated the empirical percentiles for each age/gender category. We then4

smoothed these raw percentiles using the functions5

x

c
bxay ++= 3  (1)6

for males and7

5.22 cxbxay ++=  (2)8

for females, where x is age (years) at the midpoint of the category and y is the BW at the given9

percentile. The parameters a, b, and c are provided in Table 2 and can be used to estimate10

percentiles for age categories that are not included here. Both the raw percentiles and the11

smoothed percentiles for each age category are provided elsewhere (27).12

Fig. 5 plots the 5th, 50th and 95th percentiles of BW and the empirical values for adult males13

as a function of age along with curves for children (birth through 19 years). The slight14

discontinuity at the transition from the children to the adult curves, particularly for the 95th15

percentile, is likely due to the exclusion of the NHANES III data from the CDC growth charts16

(e.g., omission of the effect of overweight persons in recent surveys).  The trend in Fig. 5 is17

similar to one seen in cross-sectional data from the NHANES II survey (28) and to the18

longitudinal long-term variation in an individual’s BW reported by Okajima (29).19

As with the children’s data, the exploratory analysis revealed that the 3-parameter lognormal20

was adequate for fitting the BW values within the different age/gender categories. Therefore, we21
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used the same method previously described for constructing BW distributions for children to fit1

the 3-parameter lognormal model for adults. Table 3 provides the resulting parameters for the2

archetypal BW distributions for adults in different age/gender categories.3

Step 2: Constructing Scenario-specific Distributions of BW4

Summary tables from the 2000 U.S. census data provide information on the demographic5

composition of the population at different geographically relevant scales for the U.S. population6

(22). Census Table P14 provides 100% counts by gender for each year from birth through 19 and7

Census Table P12 give an additional 18 age categories for adults twenty years and older. These8

age and gender specific counts form the basis for constructing BW distributions using the9

archetypal distributions described earlier.10

Based on data from the Census tables an appropriate number of individual BW values are11

drawn from each archetypal age/gender specific distribution creating a single realization of BWs12

for the population or cohort of interest. The BW values can be drawn and grouped to address13

specific needs of the PRA. (e.g., children ages 7-13 or adult women living within a particular14

exposure district). Finally, a statistical model is selected and fit to the simulated data. For BW,15

typically a 2- or 3-parameter lognormal is appropriate. When the target population is relatively16

small, we determined that the sampling and fitting process should be repeated several times to17

characterize uncertainty about the choice of statistical model and parameters.18
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ILLUSTRATIVE APPLICATION 2: EXPOSURE DURATION1

Defining Exposure Duration2

Unlike BW, exposure duration (ED) has alternate definitions. Some of the more common3

definitions include time spent in a given location, occupation, or participating in a particular4

activity. In general, exposure duration is the time interval during which exposure occurs, either5

continuously or intermittently, at a given exposure concentration and intake/uptake rate (30, page 1-6

12). For this illustration we define ED as the time spent in an “exposure district” (i.e., the area that7

is potentially impacted by a particular harmful agent and/or contaminated site).8

Task 1: Sources of Data9

A useful first approximation for ED as defined above is the amount of time an individual10

remains in his/her current residence – previously referred to as “total residence time” (31),11

“residential occupancy period” (4) and “residence duration” (32). However, approximately half of12

homebuyers purchase homes within 10 miles of their previous residence (30, Table 15-171). Thus,13

changing residence at the end of an occupancy period does not necessarily mean that the exposed14

individual has moved out of harm’s way. Therefore, the estimate of ED, as defined in this15

application, requires knowledge of both the total occupancy period and the likelihood that the16

end of the occupancy period results in a move out of the exposure district.17

Nationally representative data on total occupancy period are not available. Rather, surrogate18

data such as mobility, mortality, current residence time and/or tax records have been used to19

estimate occupancy period (31, 4, 33, 32). Information on distance of move is also lacking. The most20

readily available surrogate for distance of move is from migration data that reports movement on21

the scale of state, county, metropolitan area, central city, or suburb.22
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The U.S. Bureau of the Census conducts the American Housing Survey (AHS) (22) providing1

comprehensive housing statistics for the U.S. Department of Housing and Urban Development.2

The surveys include information on housing type, attributes of housing units, and data on3

household members. The Census also provides information on population mobility (34), and4

identifies movers and non-movers by their reported change in place of residence from one survey5

to the next. The Census further classifies movers as to whether they relocated to the same or6

different county, state, or region; and whether they are movers from abroad, within or between7

central cities, suburbs, or non-metropolitan areas. We used the housing survey data (1995 survey8

where n=58,318 households) to calculate current residence time (CRT) based on reported “Year9

householder moved into unit”. We used the calculated CRT as a surrogate for occupancy period10

to identify robust demographic variables for ED. We then used mobility data to develop11

archetypal and scenario specific distributions.12

Task 2: Identifying Homogeneous Subsets of the Population for ED13

The demographic variables in the CART analysis of ED included tenure (whether owner or14

renter occupied), age (0 –90 by year and >91yrs), gender, race, Spanish origin, household15

income as percent of poverty, and census region. We also considered whether the household was16

located in a central city or suburban area and if the residence was a farming household. The AHS17

1995 variable ‘crop sales’ (the sales of agricultural products from the farm units were $1,000 or18

more in the last 12 months prior to the interview) was used to identify farming households.19

The classification tree in Fig. 6 shows that differences in reported CRT were primarily20

dependent on age and tenure.  There was also a small regional difference for people older than 6821

years where those residing in the Northeast had average reported CRT values about 5 years22
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longer than the general population.  Fig. 7 shows that further evaluation of the age dependence of1

CRT revealed a bimodal relationship that peaks near age 18 then dropped to a minimum at2

around age 30 followed by a steady increase. This bimodal distribution may be due to a direct3

correlation between the mobility of children and their parents. If we exclude children, the4

relationship between residence time and age is approximately linear. Migration data, also5

reported in the census, indicate that the median occupancy period remains relatively constant6

across age categories in owner occupied homes but doubles between ages 24 and 65 for renters7

(35).  Furthermore, renters are approximately 4 times more likely to move in a given year than8

owners and those that do move are approximately 3 times more likely to move to a different9

county. Therefore, although age was related to CRT, we concluded that the most important10

information for characterizing the likelihood and distance of a move was the composition of the11

housing stock in the exposure district (i.e., rental versus owner occupied).12

Task 3: Constructing Archetypal Distributions for ED based on Tenure13

In constructing the ED distributions, we assumed no prior knowledge of individual ages14

within each home in an exposure district. Rather, we estimated archetypal distributions of ED in15

terms of occupancy period for a given household using tenure-based mobility data. Mobility data16

gives the likelihood that an individual within a certain demographic category will move during17

the year prior to a survey. For total movers and movers out of a county, the annual moving rates18

in the general population are relatively constant over time as shown in Fig. 8. A population19

having a constant rate of change can be described using a probabilistic model from the family of20

“life distribution models” (26), the simplest of which is the exponential model, which is21

parameterized using a single scale parameter such that the probability of moving in a given year22

is given by 1-exp(-x/b) where x is the year and b is the scale parameter.23



17

To parameterize archetypal distributions based on tenure, we used data from 1989-1999 and1

estimate the average moving rate for owner- and renter-occupied households along with the2

moving rate to a different county. Assuming that the annual variation in mobility rate is normally3

distributed, we obtained for owner occupied households annual average moving-rate scale4

parameters (± 1 standard deviation) of 0.085 ± 0.004 y-1 and 0.324 ± 0.009 y-1 for total moves5

and moves out of county, respectively.  For renter occupied households the moving-rate scale6

parameters were 0.033 ± 0.003 y-1 and 0.112 ± 0.007 y-1 for, respectively, total moves and7

moves out of county. Thus, the archetypal distributions for ED were simply rate constants8

specified for each demographic subset of the population.9

Step 2: Constructing Scenario-specific Distributions of ED10

 Using the moving rates described above one can calculate the ED for a given household in11

the housing stock as12

Â=
=

in

i
ii YED

1
(3)13

where14

Ó
Ì
Ï

≥

<
=

d

d
i PR

PR
Y

 if         0

 ifyear   1
(4)15

and R is a random number drawn from the unit rectangular variate, Pd is the tenure-based16

probability of moving as derived from the exponential model and ni is the total number of17

sequential random draws that satisfy the constraint R < Pd. This process is repeated for a given18

home over a defined averaging time (AT) generating a profile of occupancy periods for that19

residence.20
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We extend Eq. 3 to the total number of homes in an exposure district by determining the1

appropriate number of renter- and owner-occupied households in the exposure district and2

constructing a relevant sample of ED values over the specified AT. The sampling process using3

Equations 3 and 4 is easily applied using available statistical, mathematical or spreadsheet4

software packages.  The risk assessor can use a sample of ED values generated in this way to5

construct the probabilistic distribution for the scenario of interest using standard methods for6

identifying appropriate distributions and fitting them to data.7

Information about the composition of the housing stock within an exposure district can be8

accessed through the U.S. Census or by direct survey of the target population.  Specifically, the9

mobility of different demographic subsets of the population is available at10

http://www.census.gov. In applying this method to different geographical regions of the U.S., we11

found that the general exponential distribution including both location and scale (36) consistently12

provided the best fit to different sets of simulated exposure duration values.  For exposure13

districts where the number of houses is small, we recommend that the sampling and fitting14

process be repeated several times to estimate uncertainty about model parameterization. This15

approach can easily be extended to include other demographic characteristics of a target16

population but given the generality used for distance of move (i.e., out of county), it is not clear17

whether the added complexity is warranted.18

DISCUSSION19

Risk assessors use exposure models to describe the relative magnitude and variation in20

human contact with environmental contaminants.  An important measure of an exposure model’s21

performance is its ability to account for those factors that explain variation in this contact (i.e.22

age, gender, location, activity patterns and physiological characteristics). Uncertainties limit the23
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ability of models to fully characterize these relationships. The uncertainty and variability that is1

contributed to exposure/risk models by model inputs can be addressed in part through the use of2

probabilistic input distributions in the context of a PRA. But the process can become haphazard3

and inconsistent without a standard approach for developing scenario-specific input distributions4

in PRA.  It is critical that the standard approach be consistent but also maintain enough5

flexibility to address the range of exposure and risk scenarios that might exist.6

We present here an approach that provides default or archetypal distributions for exposure7

parameters in well defined subsets of the population and a process for adapting these archetypal8

distributions to specific scenarios and populations.  This approach has two steps.  The first step9

provides information that is general to most PRAs in the form of archetypal distributions for10

subsets of the population, similar to the default inputs used in deterministic risk assessment. The11

second step provides the method to adapt these defaults to scenario specific conditions, resulting12

in a probabilistic input distribution that is relevant to the target population.  We provided two13

examples to illustrate this two-step approach—one with body weight (BW) and one with14

exposure duration (ED).15

The first application using BW illustrates a case where a lot of highly relevant and precise16

data is available on a national scale, including significant detail about demographics. Even so,17

we found that these data still lack the information needed to develop archetypal distributions for18

all of the important demographic subsets of the U.S. population. Using both a CART and19

graphical analysis, we identified race as an important demographic variable for BW, but found20

insufficient data to construct archetypal distributions for all relevant combinations of age, gender21

and race. Future studies could address this shortcoming by incorporating more subjective22

techniques for defining archetypal distributions for race, particularly for individuals of23
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“asian/pacific islander” descent. Nevertheless, the archetypal distributions that we developed1

provide a first example of an approach that incorporates the benefits of “default inputs” into the2

PRA process without sacrificing the flexibility that is necessary for relating the analysis to3

specific target populations and/or risk scenarios.4

In contrast to the BW application, the ED application illustrated a case where actual5

measurements of the value of interest are virtually nonexistent but where a preponderance of6

predictive tools using surrogate data are available. For example, Israeli and Nelson, (31) used data7

from the 1985 and 1987 American Housing Surveys to estimate expected total residence time for8

a number of demographic categories. They fit a five-parameter survival function to mobility data9

then used three of the five fitted parameters to estimate the expected total residence time.10

Johnson and Capel (4) used a Monte Carlo approach to develop distributions of residential11

occupancy time by gender and age based on both mobility and mortality tables.  Finley et al. (37)12

summarized the work of both Israeli and Nelson, and Johnson and Capel then developed13

additional residential occupancy periods of children born in a given household based on moving14

rates.  Price et al. (33) use a simulation approach with mortality and mobility data to estimate what15

they term the “Fraction of Life Exposed”, which is the exposure duration divided by the lifetime16

of a hypothetical individual. The modeled person is generated to represent current distributions17

of age and gender in the U.S. population then a lifetime of exposure for that individual is18

simulated based on age specific mobility and mortality data.  Finally, Sedman et al. (32) used19

public records on property title transfers as a surrogate for occupancy period of owner occupied20

households. The advantage of the Sedman et al. method was that the records provide a closed21

interval for total residence duration.22
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All of these existing methods for estimating ED gave comparable results as illustrated in1

Fig. 9. Results from the archetypal tenure-based distributions using a nationally representative2

ratio of renter/owner households and moving rates out of county were in good agreement with3

existing models (see Fig. 9). The novel element of the approach described here is the4

identification of important demographic variables that account for relatively homogeneous5

subsets of the population and the use of these subsets to develop archetypal probabilistic6

distributions that can be used to construct distributions for a range of different populations and7

scenarios. A key advantage of this approach is that it reduces the tendency for risk professionals8

to develop models that go beyond what data and theory can support.  For example, given the lack9

of precision in defining an exposure district and the lack of detailed data on distance of move, it10

is difficult to justify a more complicated model of ED. Another advantage of the standardized11

approach described here is that it is expected to make assumptions in the PRA process more12

transparent thereby easing the burden on risk managers and government agencies who are13

charged with reviewing and using results from the PRA.14

The standard method and archetypal distributions described here can benefit from a15

systematic and critical evaluation against an independent set of well-characterized data for a16

specific population. In addition, identification of homogeneous subsets and archetypal17

distributions for other exposure factors is still needed.18
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Fig. 1: Schematic representation of standardized approach for developing exposure factor1

distributions2
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Fig. 2: Comparison of measured BW values from NHANES III (smooth curves) and self-reported2

BW values from CSFII (irregular or jagged curves).3

4
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 Sex = (2)
CV = 24%
Avg = 74.5
   n = 11016

 Age<= 15.5
CV = 21%
Avg = 81.1
   n = 5748

 Age<= 23.5
CV = 24%
Avg = 67.3
   n = 5268

 race= (1,3,5)
CV = 23%
Avg = 69.3
   n = 4314

 race= (3)
CV = 23%
Avg = 68.0
   n = 3723

 race = (3)
CV = 19%
Avg = 82.7
   n = 5360

 Age <= 19.5
CV = 19%
Avg = 83.1
   n = 5227

 Age <= 71.5
CV = 19%
Avg = 83.7
   n = 4904

Subset 15 
CV = 17%
Avg = 77.2

n = 636

 Age<= 13.5
CV = 26%
Avg = 81.1
   n = 388

Subset 6
CV = 21%
Avg = 60.7

n = 757

Subset 7
CV = 16%
Avg = 55.2

n = 102

Subset 9
CV = 25%
Avg = 76.9

n = 591

Subset 10
CV = 26%
Avg = 52.5

n = 187

Subset 11
CV = 22%
Avg = 65.1

n = 201

Subset 12
CV = 17%
Avg = 66.9

n = 133

 Age<= 13.5
CV = 23%
Avg = 58.7

n = 954

Subset 5
CV = 24%
Avg = 51.1

n = 197

Subset 14 
CV = 18%
Avg = 84.6
n = 4268

Subset 13 
CV = 20%
Avg = 73.9

n = 323

Subset 8
CV = 22%
Avg = 68.4
n = 3621

Legend
CV = percent coefficient of variation
Avg = average
n = sample size
Variables definitions
Sex (1=male, 2=female)
Age (continuous yearly values)
Race (1=white, 2=black, 3=asian/pacific islander, 4=native american and 5=other

CART Output for Body Weight (all sample persons 12 y and older)

Split 2

Split 5

Split 13 Split 6

Split 11

Split 4

Split 12 Split 8

Split 9

Split 10

1

Fig. 3: Classification and regression tree from CART analysis of the CSFII BW (kg) data. The2

tree begins at the second data split because BW of children under age 12 is dependent3

primarily on age. The figure is read as a binary decision tree. A logical statement is given at4

each decision point (hexagon) (i.e., “Sex” = (2)). Data for which the statement is true move5

to the left creating a new data subset. When the statement is false, the data move to the right.6

The average, coefficient of variation and sample size is reported for each node. The “split”7

order indicates the relative importance of that split in decomposing the data. Terminal nodes8

that are not shown include respondents age 1 and 2, 3 – 6, 7 – 9 and 10 – 11 years.9
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Fig. 4: Importance of race on reported BW from CSFII for females. Similar pattern was found for2

the reported body weight for adult men (data not shown).3
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Fig. 5:  Illustration of the 5th  (lower dash), 50th (solid line) and 95th (upper dash) percentiles of2

BW for adult males as a function of age. Curves to the left of the solid vertical line are based3

on the CDC growth charts and those to the right are from the combined CSFII, NHANES III4

data. The marks (¥) represent empirical percentiles of the raw data prior to smoothing for5

each age category.6
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Subset 9
CV = 61%
Avg = 28.1
n = 2367

Subset 2
CV = 91%
Avg = 8.9
n = 6168

Subset 4
CV = 73%
Avg = 12.5
n = 4463

Subset 7
CV = 67%
Avg = 20.0
n = 2673

Subset 1
CV =165%
Avg = 2.9
n = 10850 

Subset 8
CV = 70%
Avg = 23.0
n = 2550

Subset 6
CV = 68%
Avg = 16.4
n = 2894

Subset 5
CV = 119%
Avg = 8.7
n = 2185

Legend
CV = percent coefficient of variation
Avg = average
n = sample size
Variables definitions
Age (continuous yearly values)
Reg = Region (1=northeast, 2=midwest, 3=south, 4= west)
Ten = Tenure (1=owner occupied, 2=rental unit, 3=no cash rent)
IndSal = Annual Salary of Individual in dollars (continuous 0 - 100K, categorical > 100K)

CART Output for reported Current Residence Time (Sample persons age > 18 years)

 Age <= 53.5
CV = 115%
Avg = 10.4
   n = 42475

Split 1 Ten = (2,3)
CV = 78%
Avg = 19.4
   n = 12669

Split 2

 Ten = (2,3)
CV = 116%
Avg = 6.6

   n = 29806

Split 3

Subset 3
CV = 104%
Avg = 6.7
n = 8325

Age <=67.5
CV = 70%
Avg = 21.6
   n = 10484

Split 4

 Age <= 45.5
CV = 93%
Avg = 8.8

   n = 18956

Split 5
 Reg = (3,4)
CV = 66%
Avg = 25.5
   n = 4917

Split 6

Age <= 60.5
CV = 69%
Avg = 18.1
   n = 5567

Split 7

 IndSal <= 13K
CV = 99%
Avg = 7.6

   n = 14493

Split 8

1

Fig. 6: Classification and regression tree from CART analysis of current residence time (y) data.2

The tree excludes sample persons younger than 18 years (see text). See Fig. 3 for3

instructions on how to read tree.4

5

6

7
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1

Fig. 7: The relationship between the average reported CRT for the national population and the2

age at interview showing a bimodal distribution that may be due in part to the expected3

correlation between CRT of children and their parents.4
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Fig. 8: Annual geographic mobility data showing percent of population that reported moving2

during the year that proceeded each Annual Demographic Supplement to the Current3

Population Survey. The data used to generate this figure are from the U.S. Census (22).4
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Fig. 9: Comparison of the estimates for occupancy period (total time that an individual lives in2

current residence) from different methods. The solid line is derived from frequency (used3

here as probability) of moving to a different county during a given year as described in the4

text.5

6
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Table 1: Parameters for the 3-parameter lognormal archetypal BW distributions for each1

age/gender category for children2

Age Males Females

category

(years)

q mLN(x) sLN(x) SSxy q mLN(x) sLN(x) SSxy

0 -39.714 3.858 0.050 9.05E-03 -33.487 3.701 0.053 7.74E-03

1 0.499 2.409 0.130 2.09E-05 0.810 2.314 0.136 1.49E-05

2 3.449 2.306 0.156 3.66E-05 5.463 2.013 0.208 5.98E-05

3 6.595 2.155 0.213 2.50E-05 7.743 1.954 0.276 3.52E-05

4 8.398 2.185 0.252 5.67E-05 9.092 2.047 0.310 3.56E-05

5 9.783 2.277 0.276 1.25E-04 10.586 2.135 0.336 4.41E-05

6 11.228 2.362 0.303 5.87E-05 11.592 2.292 0.346 7.48E-05

7 12.978 2.430 0.334 4.06E-05 12.885 2.416 0.369 5.60E-05

8 15.592 2.439 0.393 1.17E-04 13.528 2.618 0.365 1.25E-04

9 17.119 2.565 0.413 1.38E-04 13.841 2.840 0.356 9.29E-05

10 17.857 2.773 0.403 6.05E-05 15.601 2.964 0.371 6.66E-05

11 17.994 3.003 0.376 5.74E-05 16.407 3.136 0.355 8.82E-05

12 18.013 3.215 0.346 7.31E-05 18.746 3.220 0.356 8.34E-05

13 18.494 3.394 0.320 4.57E-05 23.016 3.209 0.383 1.26E-04

14 19.736 3.523 0.301 3.61E-05 26.543 3.189 0.388 1.58E-04

15 22.236 3.595 0.290 1.19E-04 30.961 3.091 0.423 2.18E-04

16 29.143 3.522 0.322 3.44E-05 34.174 3.012 0.450 2.96E-04

17 31.499 3.540 0.316 5.66E-05 35.942 2.982 0.463 2.13E-04

18 34.847 3.505 0.332 8.30E-05 36.063 3.029 0.454 2.25E-04

19 34.932 3.553 0.326 4.57E-05 35.325 3.119 0.434 2.59E-04

As an example, BW values for a given age/gender category can be calculated using Microsoft3
Excel functions as BWi = (LOGINV(RAND( ), mLN(x), sLN(x)))+ q  where q is the shift or location4
parameter, mLN(x) and sLN(x) are the arithmetic mean and standard deviation of the distribution of5
ln(x) and the function RAND( ) generates a random number from the unit rectangular variate.6
Note that the negative offset parameter for children birth to 1 y will occasionally result in a7
negative value, which should be discarded prior to constructing a final distribution.8
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Table 2: Values for estimating the smoothed age specific percentiles of BW for adults1

Males (Equation 1) Females (Equation 2)

Percentile a b c a b c

0.01 7.31E+01 -2.71E-05 -9.80E+01 3.93E+01 1.16E-02 -1.33E-03

0.05 8.64E+01 -3.08E-05 -1.37E+02 4.34E+01 1.32E-02 -1.46E-03

0.10 9.23E+01 -3.10E-05 -1.51E+02 4.54E+01 1.43E-02 -1.54E-03

0.15 9.81E+01 -3.45E-05 -1.65E+02 4.62E+01 1.72E-02 -1.84E-03

0.20 1.04E+02 -3.75E-05 -1.83E+02 4.70E+01 1.84E-02 -1.95E-03

0.25 1.07E+02 -3.74E-05 -1.87E+02 4.86E+01 1.83E-02 -1.94E-03

0.30 1.09E+02 -3.73E-05 -1.88E+02 4.99E+01 1.91E-02 -2.02E-03

0.35 1.12E+02 -3.86E-05 -1.97E+02 5.12E+01 2.00E-02 -2.12E-03

0.40 1.14E+02 -3.88E-05 -2.00E+02 5.21E+01 2.12E-02 -2.24E-03

0.45 1.16E+02 -3.95E-05 -2.06E+02 5.31E+01 2.24E-02 -2.37E-03

0.50 1.17E+02 -3.90E-05 -2.02E+02 5.48E+01 2.25E-02 -2.37E-03

0.55 1.19E+02 -3.87E-05 -1.98E+02 5.62E+01 2.34E-02 -2.47E-03

0.60 1.20E+02 -3.96E-05 -1.97E+02 5.76E+01 2.51E-02 -2.66E-03

0.65 1.25E+02 -4.22E-05 -2.09E+02 5.92E+01 2.62E-02 -2.79E-03

0.70 1.28E+02 -4.50E-05 -2.17E+02 6.09E+01 2.73E-02 -2.89E-03

0.75 1.33E+02 -4.73E-05 -2.25E+02 6.47E+01 2.73E-02 -2.93E-03

0.80 1.36E+02 -4.94E-05 -2.31E+02 6.79E+01 2.82E-02 -3.04E-03

0.85 1.44E+02 -5.36E-05 -2.49E+02 7.23E+01 2.87E-02 -3.13E-03

0.90 1.40E+02 -4.89E-05 -2.04E+02 7.82E+01 3.03E-02 -3.35E-03

0.95 1.51E+02 -5.72E-05 -2.09E+02 9.02E+01 3.00E-02 -3.42E-03

0.99 1.74E+02 -8.05E-05 -2.00E+02 1.12E+02 3.26E-02 -3.80E-03

2
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Table 3: Parameters for the 3-parameter lognormal archetypal distributions of BW for each1

age/gender category for adults based on data from CSFII/NHANES III2

Age Males Females

category q mLN(x) sLN(x) SSxy q mLN(x) sLN(x) SSxy

20 34.815 3.618 0.349 1.28E-03 38.625 3.037 0.607 7.73E-04

21 34.313 3.659 0.339 1.09E-03 38.595 3.057 0.601 7.20E-04

22 – 24 33.229 3.732 0.321 8.43E-04 38.511 3.096 0.587 6.22E-04

25 – 29 31.038 3.849 0.294 6.45E-04 38.217 3.176 0.560 4.62E-04

30 – 34 28.159 3.961 0.270 6.48E-04 37.569 3.278 0.526 3.24E-04

35 – 39 24.997 4.051 0.250 7.30E-04 36.542 3.378 0.492 2.38E-04

40 – 44 21.560 4.127 0.234 8.02E-04 35.089 3.475 0.458 1.89E-04

45 – 49 17.351 4.201 0.217 8.30E-04 33.112 3.569 0.425 1.62E-04

50 – 54 12.629 4.269 0.202 8.00E-04 30.494 3.661 0.392 1.46E-04

55 – 59 0.011 4.426 0.171 7.41E-04 27.180 3.750 0.358 1.33E-04

60 – 61 0.000 4.418 0.171 6.39E-04 24.299 3.813 0.334 1.24E-04

62 – 64 0.000 4.410 0.171 5.79E-04 21.856 3.860 0.315 1.18E-04

65 – 66 0.000 4.401 0.170 5.39E-04 19.104 3.908 0.297 1.13E-04

67 – 69 0.000 4.390 0.170 5.33E-04 15.885 3.959 0.277 1.12E-04

70 – 74 -15.981 4.554 0.141 4.64E-04 9.217 4.056 0.243 1.23E-04

75 – 79 -26.074 4.630 0.126 6.60E-04 0.005 4.167 0.204 2.03E-04

80 – 84 -32.471 4.662 0.117 1.39E-03 -23.817 4.444 0.141 4.14E-04

85 – above -46.227 4.766 0.102 2.15E-03 -30.735 4.495 0.125 8.11E-04

3


